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Cover Story

Questions on the role of the EPR effect in tumor targeting

The enhanced permeation and retention (EPR) effect has been
used as a cornerstone in the research on tumor targeted drug deliv-
ery. It was comfortably accepted, and conveniently assumed, by
many researchers as the de facto principle for effective treatment
of tumors using nanoparticles. At the height of the nanotechnology
fever, the EPR effect was an ideal conduit to channel the potential
of nanoparticles to treating tumors, at least in mouse models. It seemed
as if the tumor targetingwas almost guaranteed if a drugwas formulated
in nanoparticles. As long as the two terms, “nanoparticle system” and
“EPR effect”, were combined, the results were predictably good, at least
in the mouse xenograft model. The fluorescence intensity at the tumor
site was always higher than other organs, typical data supporting the
EPR effect. Does that mean it should be taken for granted to draw an
equal sign between the EPR effect and effective tumor targeting for any
nanoparticle system?

In this issue, Professor Tonglei Li and his collaborators describe their
systematic study to examine whether the EPR effect indeed exists. Pro-
fessor Li's group examined the biodistribution of paclitaxel nanocrystals
in tumor-bearing mice [1]. The average size of the nanocrystals was
around 200 nm and no surface treatment was done to the particles.
They discovered that less than 1% of the total injected paclitaxel reached
the tumor site after intravenous injection through the tail vein. The ma-
jority of the nanoparticles were actually taken up by the macrophage
phagocytic system (MPS). In the study, tritium-labeled paclitaxel was
included in their production of nanocrystals from a solution. Thus, the
exact quantity of paclitaxel reaching the target tumor was analyzed ac-
curately by scintillation counting. Taxol®, which was used as a control,
also showed less than 1% accumulation in the tumor. Both formulations
demonstrated similar anticancer efficacy, but the nanocrystals seemed
to elicit less systemic toxicity despite a significant liver uptake. Litera-
ture information indicates that paclitaxel in Taxol® is likely to be deliv-
ered as themicellar form [2]. The extremely low amount, i.e., b1% of the
total administered dose, delivered to the tumor site by both Taxol® and
nanocrystals raised a question on the significance of the EPR effect.

Professor Li and his colleagues further conducted bioimaging studies
of the treated animals since their nanocrystals also physically integrated
fluorescent molecules. The fluorescent intensities of the mice at different
time points and dissected tissue samples deviated dramatically from the
biodistribution results. The images show significant brightness at the
tumor site, especially after 48 h of the treatment, suggesting large accu-
mulation of dye molecules. Given the outstanding discrepancy between
the biodistribution and bioimaging results, the authors suspect that the
fluorescence dye might exhibit different biodistribution behaviors, espe-
cially in blood, as compared with the drug and drug nanocrystals. The
dye molecules could be released from circulating nanocrystals or even
nanocrystals trapped in the liver. Because the tumor was implanted
under the skin where no other high blood-flowing peripheral organs
exist, the fluorescent intensities became deceptively brighter and eye-

catching. Using bioimaging data to demonstrate tumor targeting of a
drugdelivery systemmayonly add to ourmisconception of the EPR effect.

There are also a few other papers in this issue discussing the delivery
of nanoparticles that further underscore the complexity. The paper by
Lee et al. points out, based on bioimaging data, that their nanoparticles
“showed great tumor accumulation based on the EPR effect” [3]. Often,
the biodistribution data are reported as the drug concentration normal-
ized by theweight of a reported organ (e.g., the papers by Zhang et al. [4]
and by Allmeroth et al. [5]), making it difficult to comprehend the over-
all distribution among organs and tissues.

The paper by the Li group on the paclitaxel nanocrystals and others
on nanoparticle-based drug delivery systems brings an important ques-
tion on the validity of thefluorescence imaging studies and thepresence
of the EPR effect. The current paradigm of targeted delivery to tumors
using the mouse xenograft models requires careful reexamination. Re-
cent literature data indicate that nanoparticles do not really increase
the amount of the drug delivered to tumors, but the toxic side effect
seemed to be reduced. In fact, as pointed by the Li group, it may be
more productive if the nanoparticle research focuses on reducing the
systemic toxicities and balancing the biodistribution in health organs
and tissues. After almost two decades of blind belief on the EPR effect,
it is time to think outside the box to really move the tumor targeted
drug delivery forward.
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